Degree spectra of prime models
نویسنده
چکیده
We consider the Turing degrees of prime models of complete decidable theories. In particular we show that every complete decidable atomic theory has a prime model whose elementary diagram is low. We combine the construction used in the proof with other constructions to show that complete decidable atomic theories have low prime models with added properties. If we have a complete decidable atomic theory with all types of the theory computable, we show that for every degree d with 0 < d ≤ 0′, there is a prime model with elementary diagram of degree d. Indeed, this is a corollary of the fact that if T is a complete decidable theory and L is a computable set of c.e. partial types of T , then for any ∆2 degree d > 0, T has a d-decidable model omitting the nonprincipal types listed by L.
منابع مشابه
The degree spectra of homogeneous models
Much previous study has been done on the degree spectra of prime models of a complete atomic decidable theory. Here we study the analogous questions for homogeneous models. We say a countable model A has a d-basis if the types realized in A are all computable and the Turing degree d can list ∆0-indices for all types realized in A. We say A has a d-decidable copy if there exists a model B ∼= A s...
متن کاملA characterization of the symmetric group of prime degree
Let $G$ be a finite group and $Gamma(G)$ the prime graph of $G$. Recently people have been using prime graphs to study simple groups. Naturally we pose a question: can we use prime graphs to study almost simple groups or non-simple groups? In this paper some results in this respect are obtained and as follows: $Gcong S_p$ if and only if $|G|=|S_p|$ and $Gamma(G)=Gamma(S_p)$, whe...
متن کاملPrime models of computably enumerable degree
We examine the computably enumerable (c.e.) degrees of prime models of complete atomic decidable (CAD) theories. A structure has degree d if d is the degree of its elementary diagram. We show that if a CAD theory T has a prime model of c.e. degree c, then T has a prime model of strictly lower c.e. degree b, where, in addition, b is low (b′ = 0′). This extends Csima’s result that every CAD theor...
متن کامل2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
متن کاملSpectra of Heisenberg Graphs over Finite Rings
We investigate spectra of Cayley graphs for the Heisenberg group over Þnite rings Z/pZ, where p is a prime. Emphasis is on graphs of degree four. We show that for odd p there is only one such connected graph up to isomorphism. When p = 2, there are at most two isomorphism classes. We study the spectra using representations of the Heisenberg group. This allows us to produce histograms and butter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 69 شماره
صفحات -
تاریخ انتشار 2004